
EECS 482 Introduction to Operating Systems
Spring/Summer 2020

Lecture 14: Process creation and fork

Based on slides by Harsha V. Madhyastha

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda
1. Midterm.

2. Review of MLP and kernel vs. user.

3. Process creation and fork.

4. Project 3 due July 27.

2

Agenda
1. Midterm.

2. Review of MLP and kernel vs. user.

3. Process creation and fork.

4. Project 3 due July 27.

3

Midterm

4

Regrade requests must be submitted by 11:59 pm EDT tonight.

5

Optimizing the lock

6

lock()
{
disable interrupts;
while (TestAndSet(guard))

;
if (status == FREE)

status = BUSY;
else

{
add thread to queue of threads

waiting for lock;
switch to next ready thread;
}

guard = 0;
enable interrupts;
}

You were asked to optimize this
lock given that contention was
expected to be very low.

The insight it called for was to
notice if you had a TestAndSet
that was safe to use on the
guard, it would also be safe to
use on the status variable.

Solution is to attempt a
TestAndSet of the status
variable and only do the full
lock routine if it failed.

Optimizing the lock

7

lock()
{
if (!TestAndSet(status))

return;
disable interrupts;
while (TestAndSet(guard))

;
if (status == FREE)

status = BUSY;
else

{
add thread to queue of threads

waiting for lock;
switch to next ready thread;
}

guard = 0;
enable interrupts;
}

This is a partial solution.

What’s wrong with this?

There’s sill a race to check
and then set the status.

Optimizing the lock

8

lock()
{
if (!TestAndSet(status))

return;
disable interrupts;
while (TestAndSet(guard))

;
if (TestAndSet(status))

{
add thread to queue of threads

waiting for lock;
switch to next ready thread;
}

guard = 0;
enable interrupts;
}

This is all it takes.

A possibly better solution
might be to loop, attempting a
small number of TestAndSet
operations before doing the
full lock routine.

Global order

9

Step Order

1. BAC BAC

2. BAD BA[CD]

3. EAC [BE]A[CD]

4. DE inconsistent!

5. AD [BE]A[CD]

Consider a process with 5
threads, 1 through 5, that
must share 5 resources, A
through E, making requests
as follows.

1. BAC
2. BAD
3. EAC
4. DE
5. AD

Solution is for thread 4 to unlock D, then take E, then D in the correct global
order.

Agenda
1. Midterm.

2. Review of MLP and kernel vs. user.

3. Process creation and fork.

4. Project 3 due July 27.

10

11

Correction

Multi-level paging is
managed by software in the
OS.

But accesses for TLB
misses are hardware-
accelerated.

The hardware defines how
many levels it supports and
which bits are used for
indexing each level.

Multi-level paging

Image source: Anderson & Dahlin, Operating Systems: Principles and Practice, p. 398.

System calls
When you call cin in your C++ program:
1. cin calls read(), which executes assembly-language instruction

syscall.
2. syscall traps to kernel at pre-specified location.
3. kernel’s syscall handler calls kernel’s read().

To handle trap to kernel, hardware atomically:
1. Sets the mode bit to kernel.
2. Saves registers, PC, SP.
3. Changes SP to kernel stack.
4. Changes to the kernel’s address space.
5. Jumps to exception handler.

12

Arguments to system calls
Two options:
1. Store in registers.
2. Store in memory (in whose address space?)

Kernel first checks validity of arguments:

read(int fd, void *buf, size_t size)

Is fd a valid descriptor for open file?
Are all addresses in [buf,buf+size) valid?
Are all addresses in [buf,buf+size) writable?

13

Protection summary
Safe to switch from user to kernel mode because control is only transferred to
certain locations and the number of entry points to the system is kept limited to
limit the attack surface.

Where are these locations stored?
Interrupt vector table.

Who can modify interrupt vector table?
Only the kernel. Set once at boot, then never changed.

Why is it easier to control access to interrupt vector table than mode bit?
The mode bit changes constantly and every change must be scrutinized. But
the IVT never changes.

14

Address Space Protection
How are address spaces protected?

Separation of translation data, meaning the translation data must be
protected.

How is translation data protected?

Can update translation data only if mode bit set.

How is mode bit protected?

Sets/reset mode bit when transitioning from user-level to kernel-level code
and back.

Transitions limited by interrupt vector table.

Protection boils down to init process which sets up interrupt vector table when
system boots up.

15

Memory Management so far
How to represent virtual address spaces?

Larger than physical memory.
Controlled sharing.
Independently grow parts of address space.
Low overhead for sparse address spaces.
Paging.

How to minimize hardware interface?
Manipulate protection bits to incur page faults and maintain
additional state in kernel.

How to separate kernel vs. user address space?
Pinning of pages, map physical memory into pager.

16

Agenda
1. Midterm.

2. Review of MLP and kernel vs. user.

3. Process creation and fork.

4. Project 3 due July 27.

17

Process creation
Steps
1. Allocate process control block.
2. Initialize translation data for new address space.
3. Read program image from executable into memory.
4. Initialize registers.
5. Set mode bit to “user”.
6. Jump to start of program.

Need hardware support for the last few steps.
We’re undoing the switch from user to kernel that happens in a
system call.

18

Processes sharing memory
How to divide physical memory among processes?

Should every process get same amount of memory?
Fairness versus efficiency.

Global replacement
Can evict pages from the faulting process or any other.

Local replacement
Can evict pages only from the faulting process.
Must determine how many frames each process gets.

Pros and cons?

19

Thrashing
What happens if many large processes all actively use their entire
address space?

Performance degrades rapidly as miss rate goes up.
Average access time = hit rate * hit time + miss rate * miss time

Example: Assume hit time = 100 ns = .0001 ms, miss time = 10 ms.
Average access time (100% hit rate) = .0001 ms
Average access time (1% miss rate) = .100099 ms
Average access time (10% miss rate) = 1.00090 ms

20

Solutions to Thrashing
Buy more DRAM.

Very common solution in cloud servers.
Price per GB fallen by 4x since 2009.

Run fewer processes for longer time slices.
Reduces page faults.
But may cause poor interactivity due to long time slices.

21

Working set
Thrashing depends on portion of address space actively used by
each process.

What do we mean by “actively using”?

Working set = all pages used in last T seconds.
Larger working set  needs more memory to run well.

Sum of all working sets should fit in memory.
One solution is to run a subset of the processes that fit in
memory.

How to measure size of working set?
Periodic sweep of clock hand in LRU clock.

22

Unix process creation
System uses a sequence of two calls to start a process:
1. fork() creates a copy of current process.
2. exec(program, args) replaces current address space with

specified program.

Why first copy the process only to overwrite it?
Allows sharing of code, file descriptors, other state information and
results in a simple interface.
Windows by contrast, uses a single CreateProcess() system call,
but requires a very complex set of arguments to deal with all the
possible cases.

23

24

BOOL CreateProcessA(
LPCSTR lpApplicationName,
LPSTR lpCommandLine,
LPSECURITY_ATTRIBUTES lpProcessAttributes,
LPSECURITY_ATTRIBUTES lpThreadAttributes,
BOOL bInheritHandles,
DWORD dwCreationFlags,
LPVOID lpEnvironment,
LPCSTR lpCurrentDirectory,
LPSTARTUPINFOA lpStartupInfo,
LPPROCESS_INFORMATION lpProcessInformation

);

BOOL CreateProcessW(
LPCWSTR lpApplicationName,
LPWSTR lpCommandLine,
LPSECURITY_ATTRIBUTES lpProcessAttributes,
LPSECURITY_ATTRIBUTES lpThreadAttributes,
BOOL bInheritHandles,
DWORD dwCreationFlags,
LPVOID lpEnvironment,
LPCWSTR lpCurrentDirectory,
LPSTARTUPINFOW lpStartupInfo,
LPPROCESS_INFORMATION lpProcessInformation

);

There is no fork().

Creates the child running a new
executable, returns a handle to the
child.

argv is passed as a string, not an
array.

Child process retrieves the
command line with
GetCommandLine(). C runtime
turns that into argc, argv.

Slightly complex rules for words
containing spaces or quotes.

Lots of options for debugging, etc.

Two versions.

Windows CreateProcess

Unix process creation
System uses a sequence of two calls to start a process:
1. fork() creates a copy of current process.
2. exec(program, args) replaces current address space with

specified program.

Any problems with child being an exact clone of parent?

25

Cloning

26

Need to know which is the parent and which is the child.

Fork and exec
Fork uses the return code
to differentiate parent from
child.

Child gets return code 0.

Parent gets child’s unique
process id or pid.

27

int pid = fork();
if (pid == 0)

{
exec (); /* child */
}

else
{
/* parent */
}

Fork bombs
Can easily overwhelm
the system by creating
thousands of forked
copies with malicious
code.

28

In C++:

for (int i = 100; i--;)
fork();

In bash:

:(){:|:&};:

Subtleties in handling fork
Buggy code from
autograder that caused
false complaints.

What is the race
condition here?

Initially, the child’s
address space is a
copy of the AG, which
is huge.

29

if (!fork())

exec(command);

While (child is alive)

if (size of child address space > max)

{

print "process took too much memory";

kill child;

break;

}

Avoiding work on fork
Copying entire address space is expensive
Instead, Unix uses copy-on-write.
Maintain reference count for each physical page.
On fork(), copy only the page table of parent.

Increment reference count by one.
On store by parent or child to page with refcnt > 1:

Make a copy of the page with refcnt of one.
Modify PTE of modifier to point to new page.
Decrement reference count of old page.

30

Copy-on-write: Example

0x00000001
0x00000002
0x00000003

Parent page table

(Refcnt: 1)

Physical pages

(Refcnt: 1)

(Refcnt: 1)

Parent about to fork().

31

Copy-on-write: Example

0x00000001
0x00000002
0x00000003

Parent page table

(Refcnt: 2)

Physical pages

(Refcnt: 2)

(Refcnt: 2)

Copy-on-write of parent address space.

0x00000001
0x00000002
0x00000003

Child page table

32

Copy-on-write: Example

0x00000001
0x00000002
0x00000003

Parent page table

(Refcnt: 2)

Physical pages

(Refcnt: 1)

(Refcnt: 2)

Child modifying page 2 causes a copy to be made.

0x00000001
0x00000002
0x00000003

Child page table

(Refcnt: 1)

33

Copy-on-write: Example

0x00000001
0x00000002
0x00000003

Parent page table

(Refcnt: 2)

Physical pages

(Refcnt: 1)

(Refcnt: 2)

Parent modifying page 2 does not require copying.

0x00000001
0x00000002
0x00000003

Child page table

(Refcnt: 1)

34

Copy-on-write: Example

(Refcnt: 1)

Physical pages

(Refcnt: 1)

When the parent
exits, its page table
is deleted and the ref
counts decremented.

If a ref count
becomes 0, that
page is freed.

The child may
continue running.

0x00000001
0x00000002
0x00000003

Child page table

(Refcnt: 1)

35

Making exec() faster
exec() initializes code in the address space.

Naive solution: read file, copy into memory.
Can we do better?

Observation: most code never accessed.
Load code on-demand.
Similar to loading memory paged to disk.
Memory-mapped files, like the file-backed pages in P3.

36

File-backed vs. swap-backed
Swap-backed pages

Block on disk chosen by pager.
A process’s writes to a page visible only to that process.
Modifications lost after process exit.

File-backed pages
Block on disk chosen by app.
Any process’s write to a page visible to other processes that
map the same block.
Modifications persist across process lifetimes.

37

Implementing a shell
while (true)

{
print the prompt;
read the input;
parse into a command + arguments;
fork a copy of the shell process;
if (child)

{
redirect i/o as requested;
exec the new program with the

specified arguments;
}

else
//parent
if (!background execution)

wait for child to finish;
}

38

Here’s how a
shell works.

Agenda
1. Midterm.

2. Review of MLP and kernel vs. user.

3. Process creation and fork.

4. Project 3 due July 27.

39

Project 3
Process view:
1. Every process has an address space starting from

VM_ARENA_BASEADDR of size VM_ARENA_SIZE.
2. When a process starts, the entire address space is invalid.
3. Process calls vm_map to make pages valid.
4. Pages becomes invalid when a process ends.

Pager view:
1. One process runs at a time.
2. Sets up page table that the MMU uses for translation.
3. Handles vm_create, vm_map, and vm_fault.

40

Project 3
Swap-backed pages:
1. Global swap file shared by all processes.
2. Pager controls where pages are stored in the swap file.
3. Individual pages are private to a process.

File-mapped pages:
1. Process specifies the file and offset.
2. Can be shared across processes.

41

Project 3: App vs. OS

Protection
All pages can be read from and written to.
Using R/W bits to track reference, dirty, etc.

Sharing
File-backed pages.
Copy-on-write.

42

Project 3
1. Do the project incrementally.

2. Swap-backed pages only without fork.

3. Then add support for fork and file-backed pages one after the
other.

4. Pro Tip: Start with state diagrams for swap-backed, file-backed
pages.

43

Project 3: State Diagram
For each unique state, consider:
1. Transitions? Read, write, clock, copy, ...
2. Attributes? Valid, resident, dirty, ...
3. Protections? Enable read, enable write?

44

Mapped

Valid: Yes
Resident: Yes
Dirty: No
Zero-filled: Yes
....

Written

Valid: Yes
Resident: Yes
Dirty: Yes
Zero-filled: No
....

Write

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 14: Process creation and fork
	Agenda
	Agenda
	Midterm
	Slide Number 5
	Optimizing the lock
	Optimizing the lock
	Optimizing the lock
	Global order
	Agenda
	Slide Number 11
	System calls
	Arguments to system calls
	Protection summary
	Address Space Protection
	Memory Management so far
	Agenda
	Process creation
	Processes sharing memory
	Thrashing
	Solutions to Thrashing
	Working set
	Unix process creation
	Slide Number 24
	Unix process creation
	Cloning
	Fork and exec
	Fork bombs
	Subtleties in handling fork
	Avoiding work on fork
	Copy-on-write: Example
	Copy-on-write: Example
	Copy-on-write: Example
	Copy-on-write: Example
	Copy-on-write: Example
	Making exec() faster
	File-backed vs. swap-backed
	Implementing a shell
	Agenda
	Project 3
	Project 3
	Project 3: App vs. OS
	Project 3
	Project 3: State Diagram

